The ecology of the red fox Vulpes vulpes in relation to small game in rural southern England.

Author Reynolds, J.C. & Tapper, S.C.
Citation Reynolds, J.C. & Tapper, S.C. (1995). The ecology of the red fox Vulpes vulpes in relation to small game in rural southern England. Wildlife Biology, 1: 105-119.

Abstract

Diet, population density, dispersion, and productivity of red foxes were investigated in an II km2 area of mixed agriculture representative of much of lowland rural Britain, where medium-sized animals (adult weight 0.3-3.5 kg) were abundant. Four small game species within this size range - brown hare Lepus europaeus, pheasant Phasianus colchicus, grey partridge Perdix perdix, and redleg partridge Alectoris rufa - were also censussed twice a year throughout the study. Fox diet was determined by analysis of faecal material, with diet of cubs at breeding dens analysed separately. Two-thirds of fox diet consisted of vertebrate prey in the range 0.3-3.0 kg. Prey types of overwhelming importance for foxes in other environments - such as small rodents, fruit and invertebrates - each contributed 10% or less to fox diet. Fox territory size was determined by radio-tracking eight adult foxes during a three-year period in spring. Summer and autumn. Details of family group size, number of litters per group, and litter size were determined through field observation. Adjacent fox territories (mean size 2.7 km2) formed a contiguous mosaic with individual foxes spending less than 10% of their active time on ground shared with neighbouring groups. Typically each territorial group held an adult pair and had one litter of four cubs. Half of these groups had an additional, non-breeding vixen. Most known fox deaths were the result of deliberate control by man. Control on a central 4.75 km2 farm reduced adult fox density and eliminated cub production there, and for the whole 11 km2 study site deliberate control was almost sufficient in itself to negate annual numerical increase in fox numbers. The food requirements of foxes living at this density was estimated, and from this the biomass of lagomorphs and gamebirds consumed. Even assuming early dispersal of juvenile foxes, the biomass of these species consumed annually was substantial relative to that available at the onset of breeding. It is suggested that hare and rabbit populations were able to survive this heavy depredation because they have a long breeding season and foxes exploited annual production of young prior to maturity; by contrast, the pheasant population was supported artificially by release of hand-reared birds.